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PERIODIC SOLUTION OF TURBULENT OSCILLATING 
CHANNEL FLOWS 

QIN ZHONG AND M. D. OLSON 
Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1 W5 

SUMMARY 
The time-dependent turbulent Navier-Stokes equations are solved numerically by a finite element method 
with an algebraic eddy viscosity model (Baldwin-Lomax formulation) for oscillating turbulent channel 
flows. The method of averaging is used to analyse the resulting periodic motion of the fluid. Numerical 
results are obtained for various Strouhal numbers and relative amplitudes. A comparison is made between 
the numerical and published experimental results. It appears that for low relative amplitudes in a certain 
range of frequencies the agreement is satisfactory. 
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1. INTRODUCTION 

It is very important to take into account the effects of flow unsteadiness for many practical 
applications in aerodynamic and coastal engineering. Much work has already been devoted to 
unsteady laminar flow situations and the area is well understood. However, for the turbulent case, 
results are less abundant and consequently the knowledge of this problem is relatively poor. 

The earlier experimental study of an oscillating turbulent boundary layer was carried out in 
1959 by Karlsson,' who measured the mean properties and the harmonic component under a 
wide range of free stream amplitudes and oscillation frequencies. He found that the mean 
characteristics of the boundary layer are not much different from those of the steady state case. 
Cousteix et dz investigated an unsteady turbulent boundary layer in the presence of an 
oscillatory free stream. The experimental observations showed that the general behaviour of the 
boundary layer and the structure of the turbulence are not fundamentally affected by the 
unsteadiness of the flow. An experimental investigation of the periodic velocity oscillations in 
unsteady turbulent channel flow by Binder and Kueny3 confirmed the previously published 
results. The mean velocity profiles measured in oscillating flow are indistinguishable from those in 
steady flow in a certain range of frequencies. From these observations it is well founded to 
suppose that the hypotheses used in calculation methods for the steady case are still valid for the 
unsteady case. A compilation of unsteady turbulent boundary layer experimental data was made 
by 

In the analysis area, several turbulent closures developed for steady flows have been applied to 
unsteady flows. Telionis and Tsahalis5 considered time-dependent turbulent flows over a semi- 
infinite plate. The boundary layer equations were integrated numerically with the Cebeci-Smith 
eddy viscosity model used for closure. Extensive comparisons with experimental data were 
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attempted for the first time. Cousteix et al.’ studied the structure and development of a turbulent 
boundary layer in an oscillatory external flow. A classical mixing length model and a two- 
equation turbulence closure model were used in the numerical prediction. The numerical results 
indicated that both turbulence models seemed to be valid for unsteady flow. Telionis6 gave a 
detailed review of unsteady boundary layer work. All the existing analytical models were carried 
over from steady flow and it was argued that for some methods the agreement between the 
numerical results and experimental data was imperfect but probably adequate for engineering 
purposes. Some more recent studies are presented in References 7 and 8. In all the foregoing 
modelling work the transient equations were integrated numerically in time. 

In the present paper the need for this numerical integration in time is eliminated by assuming 
the solution to be periodic and applying the method of averaging. To the writers’ knowledge this 
is the first time this approach has been applied to turbulent flow calculations. The Navier-Stokes 
equations incorporating the Baldwin-Lomax eddy viscosity model are discretized by the use of 
the finite element method. The calculation methods developed previously for periodically 
oscillating laminar flow and steady turbulent flowg, lo  are appropriately extended to periodically 
oscillating turbulent flow. 

An approximation is introduced in the present study in order to simplify the calculations. That 
is, the eddy viscosity is frozen at the level calculated from the mean component of the flow. This 
approximation was severely criticized by one of the reviewers with, we must agree, some 
justification. However, the significance of this approximation cannot be determined until a more 
rigorous analysis is carried out or results from other methods become available. The current 
method is applied to a few cases for which experimental results are available and in most cases 
reasonable comparisons are observed. 

2. GOVERNING EQUATIONS AND METHOD OF SOLUTION 

For two-dimensional incompressible, unsteady, turbulent flow the Navier-Stokes equations 
incorporating an eddy viscosity model are given by 

P ( u . ~  + uu,x + v u , y )  = - p , x  + 2 ( ~ e u , x ) , x  + Cpe(v,x + u . y ) l , y t  

~ ( 0 , t  + uu,x + u u , y )  = - ~ , y  + 2 ( ~ e u , y ) , y  + C P e ( 0 . x  + u , y ) I , x ,  

u,x + 0 . y  = 0, (1) 
where x and y are the co-ordinates and u and u are the ensemble-averaged velocity components 
respectively, t is the time, p is the density, p is the pressure and p, is the effective viscosity made up 
of the molecular viscosity p and the eddy viscosity pt. 

The present work uses curved isoparametric elements with biquadratic interpolation for 
velocity and bilinear for pressure. The velocities and pressure are represented by 

u = N i u i ( t ) ,  
u = Niui( t ) ,  
p = M i p i ( t ) ,  

i = 1,2, . . . , 8 ,  
i = 1,2, . . . , 8 ,  
i = 1,2,3,4,  

where N i  and M i  are the shape functions and ui, ui and pi are the time-dependent nodal variables. 
The interpolation functions (2) are substituted into equations (1) and the method of weighted 

residuals is employed to generate the finite element equations 

Md + Kd + 6 = 0, (3) 
where M is the mass matrix, K is the stiffness matrix, 6 contains the non-linear terns due to the 
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convection terms in equations (1) and d is the nodal vector of unknowns u, v and p. Further details 
are available in Reference 9. 

The direct solution of the resulting finite element equations (3) is time-consuming and 
expensive. In the present study a periodic solution is desired and hence the method of averaging is 
used to advantage. We assume that the nodal vector of unknowns takes the periodic form 

d = A+Bcos(Qt)+Csin(Rt), (4) 
where A is a constant vector, the vectors B.and C are assumed to be slowly varying functions of 
time and Q is the oscillatory frequency. In equation (4) the nodal vector is composed of a mean 
component A and a harmonic component with in-phase and out-of-phase amplitudes B and C 
respectively. When the method of averaging is applied, B and C are replaced by their average 
values and B and C are set equal to zero. Thus 

d = -BRsin(Qt)+CQcos(Qt). ( 5 )  

To obtain the three sets of equations for the three sets of unknowns A, B and C, equations (4) 
and (5 )  are first substituted into the finite element equations (3), then the resulting equations are 
(i) averaged over the period 2n/Q, (ii) multiplied by sin (Qt) and averaged over the period 2n/Q 
and (iii) multiplied by cos(Rt) and averaged over the period 2n/Q. Through this process a set of 
non-linear algebraic equations for A, B and C is obtained. These equations are solved using the 
Newton-Raphson method following Reference 9. In Reference 9 the method was applied to an 
extensive number of laminar problems and the predictions were compared with experimental 
results. It was found to provide excellent predictions for a wide range of Reynolds and Strouhal 
numbers. 

The relaxation technique developed in Reference 10 is employed to calculate the eddy viscosity. 
A uniform eddy viscosity field is first established from an appropriate laminar solution. The eddy 
viscosity is held constant while several Newton-Raphson iterations are performed on the 
velocity-pressure variables. Once the velocity-pressure field has converged, the turbulence 
models are invoked and the viscosity distribution is updated by the relaxation formulation. Then 
the velocity-pressure calculations are repeated with the new eddy viscosity distribution. This 
process is continued until the viscosity has converged as well. 

All matrices are evaluated by 3 x 3 Gauss numerical integration and all the calculations for the 
turbulent viscosity are carried out at the Gauss points. The computer programmes are imple- 
mented in double precision on a new supercomputer system with vector facility (IBM 3090). The 
solution of the linear algebraic equations and the matrix inversions are performed using a sparse- 
matrix-solving package called SPARSPAK (University of Waterloo). 

3. TURBULENCE MODEL 

The Baldwin-Lomax eddy viscosity model" has found wide application in the prediction of 
steady turbulent flows. The present authors have tested this model and found that it is well 
behaved for attached flows' and with appropriate modifications it can reasonably represent 
separating flows as well.13 At the first stage of the present work the original Baldwin-Lomax 
model with slightly changed empirical constants is used. Some of the constants in the original 
model were set for finite Mach number flows and these were modified slightly to give a better fit 
for the incompressible case." 

A brief summary of the Baldwin-Lomax model follows. The model provides an algebraic 
representation of the eddy viscosity as a function of y, the co-ordinate normal to a wall. It is 
subdivided into two functions, namely an inner one close to the wall and an outer one in the outer 
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flow, in order to approximate the distinctly different mixing phenomena taking place in the 
respective regions. In the inner region the eddy viscosity is given by 

(pt)inner = P C ~  Y 01' 101, (6) 
where 1 0 1  is the magnitude of the vorticity, k=0.4 is the von Karman constant, y is the normal 
distance from the wall and D is the Van Driest damping factor, which is given by 

D = 1 - exp c - Y J ( P T W ) / 2 6 P l ,  

(&)outer = p K C c p  Fwake Fkleb, 

(7) 

(8) 

with zw the wall shear stress. In the outer region the eddy viscosity is given by 

where K = 0 . 0 1 6 8  is the Clauser constant, Cc, is an additional constant which is taken as 1.2 in the 
present study and 

Fwake = Ymax Fmax. (9) 

F(Y) = YIOID. (10) 

The quantities y,,, and F,,, are determined from the outer function 

F,,, is the maximum value of F ( y )  that occurs in a profile and y,,, is the value of y at which F,,, 
occurs. In equation (8) the function F k l e b  is the Klebanoff intermittency factor given by 

(1 1) 6 - 1  
Fkleb = c 1  -k 5'5(cklebY/Ymax) 1 . 

The empirical constant C k l e b  is chosen to be 054  here. The eddy viscosity is switched from the 
inner to the outer formula at the location where the values from equations (6) and (8) are equal. 

In the original Baldwin-Lomax model the flow field was steady and hence the above 
formulation gave a constant (in time) eddy viscosity. However, in the present work the flow field is 
unsteady. Hence if we make the normal quasi-steady assumption, then the eddy viscosity becomes 
unsteady and in particular periodic. It is possible to include this effect in the present method but it 
would be extremely complex. Hence in the present work we argue that the periodic component of 
the flow field is relatively small compared to the steady part and thus the change to the eddy 
viscosity will also be small. Further, it is known that a small change in the eddy viscosity has only 
a minor effect on the overall flow field. Hence in the present work the vorticity and the wall shear 
stress in the Baldwin-Lomax formulae are calculated only from the distribution of the mean 
component of velocity (i.e. part A in equation (4)). In the following numerical examples some 
numerical tests are conducted to check out the effect of these approximations, and indeed they 
seem to be reasonable. 

4. RESULTS AND DISCUSSION 

Two flow problems for which experimental data were available are used as test applications 
herein. These are designated as cases A and B. In case A3 the measurements were performed in a 
water channel of length 2600 mm, height 100 mm and span lo00 mm. The oscillating flow was 
driven by a reciprocating piston. The velocities were measured with a laser velocimeter operating 
in the fringe mode and the Doppler frequency was measured with a counter. 

In case BZ the experiments were carried out in a wind tunnd and the periodic flow was 
generated by means of a rotating vane set in the diffuser section downstream of the test section. 
The development of the boundary layer was studied on the floor of the 100 mm by 110 mm test 
section and the velocities were measured with hot wire anemometers. The Reynolds numbers 
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corresponding to these experiments are quite different and therefore provide an extra challenge to 
the numerical modelling. Unfortunately the time variation of the periodic component was not 
measured in case A but the authors' discussion implied it was essentially harmonic. In case B it 
was measured and indeed it was very close to harmonic. Hence the present periodic solution 
approximation is well supported by the experimental results. 

Several preliminary calculations were carried out with a variety of finite element grids. This 
culminated in the type of grid shown schematically in Figure 1, which was deemed to be adequate 
for present purposes, which are mainly to show the validity of the present solution approach. The 
grid incorporates geometric progression in both directions. Note that the vertical and horizontal 
scales are not equal. 

The following boundary conditions were applied (Figure 1 ): 

upstream, x = o :  u = u o ,  v = o ,  
downstream, x = L :  p = o ,  u = o ,  
on the wall, y = o  u = o ,  v = o ,  
on the symmetry line, y = h: t = 0, u = 0, 

where uo = u, + up is the specified velocity made up of a mean component u, and a harmonic 
component up. Note that in the present formulation the symmetry line boundary condition of 
zero shear stress is a natural boundary condition which is not satisfied directly but rather is 
satisfied by the method in the Galerkin sense. 

The details of the finite element grids and the computational conditions are given in Tables I 
and I1 respectively. Note that the case A calculations were carried out with a second grid (grid 11) 
which had 50% more elements in the y-direction in order to check on mesh sensitivity through 
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Figure 1. Typical finite element grid and flow domain 

Table I. Details of finite element grids 

Number of 
elements Element dimensions 

Case Grid X Y AXmin (mm) AXi/AXi-l AYmin (mm) A & / A T - l  

A I 12 8 4 1.643 0.35 1.814 
I1 12 12 4 1.643 0.20 1.495 

B 8 8 4 1.9 0.35 1.814 
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Table 11. Computational conditions 

Case Re S t  up u, (cms-') A, (cms-') h (mm) L (mm) 

A 8800 0,133 Acos(at) 17.5 1.12 50 2400 
1.2 Acos(Rt) 17.5 0.98 50 2400 

B 67240 0.4 A sin (at) 3362 1248 50 750 

n I I I I I " 
1 1 0' 102 

Y+ 

Figure 2. Mean velocity distribution in channel flow (case A) 

103 

the boundary layer. Grid refinement in the streamwise direction was not necessary because all the 
calculated results became fully developed well before the downstream end. 

In Table I1 the Reynolds number Re and the Strouhal number S t  are based on the half-channel 
width h and inlet mean velocity u, at the centre line and A,  is the amplitude of the inlet velocity at 
the centre line y = h. 

In case A the relative amplitude of the oscillatory component was small, namely 5.6% and 
6.4%. The calculation was performed for two frequencies differing by one order of magnitude, 
namely St  = 0.133 and 1.2. In the wall region the mean velocity urn was determined from 
durn/dy=0.64p/p out to the location where urn=u,. 

The finite element grid I had 96 elements and 329 nodes with 661 net degrees of freedom. Out of 
the 661,16 velocity degrees of freedom lie on the upstream boundary and were specified. For the 
periodic flow situation there are three types of coefficients A,  B and C and this resulted in 1935 
variables in total. Grid I1 had 144 elements, 481 nodes and 997 net degrees of freedom with 24 
specified velocity components. The final net number of A, B and C variables was then 2919. 

Figure 2 shows a comparison of the computed velocity distribution ( u +  versus y') from 
grid I with the experimental data at the location x = 2400 mm, where u+ =u, / (p/r , )  and 
y +  =,/(pz,)y/p. The grid I and I1 results are indiscernible from each other at this scale. The 
mean velocity profiles computed in oscillating flows for two Strouhal numbers are virtually the 
same as the steady flow curve and are in good agreement with the experimental rnea~urement.~ 
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1.2 

Figures 3 and 4 show the amplitude and phase, respectively, of velocity oscillations in the wall 
region at a Strouhal number of 1-2 as obtained from both grids. Compared with the experimental 
data,3 the present predictions appear to be reasonable. In Figures 5 and 6 the corresponding 
distributions of the amplitude and phase at St  = 0133  are presented. The amplitude near the wall 
follows very closely the experimental data again, but the phase near the wall is quite different from 
the measurements. The same type of discrepancy was noted in Reference 3 between the experi- 
ment and their Stokes flow solution and the authors were not able to explain it. In that sense the 
present predictions agree with those reported in Reference 3. Some of the present discrepancy 
may be due to the 'frozen' eddy viscosity approximation used herein. On the other hand, there is 
qualitative agreement of the present results with those of Karlsson,' such as smaller phase shifts 

0 
0 

- 0 
0 O @  

0.8 
a 

0.6 St  = 1.2  

0.2 0.4 r. E X P E R I M E N T A L  
DATA 
G R I D  I 
G R I D  11 

- 
--- 

n I I I I " 
0 10 20 30 40 50 

Y+ 

Figure 3. Amplitude in the wall region (case A) 
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model and the calculations for case A were then repeated. It was felt that this procedure should 
provide a bound on the real situation where the periodic component is only additive for half of 
each cycle. 

Some typical results of this investigation are shown in Figure 7, where the normalized effective 
viscosity profiles are plotted with and without the above change. These results are from the 
central Gauss point in each element at the downstream end of grid I1 for St = 1-2. It is seen that 
very close to the wall the eddy viscosity is negligible and the effective viscosity is just equal to the 
molecular value. Further out from the wall there is a discernible difference in the two results. The 
largest relative difference shown here is about 6.5% at y = 5.2 mm. Coincidentally this difference is 
close to the relative amplitude of the periodic component for this case, namely 5.6%. The 
corresponding velocity and phase angle profiles obtained from these calculations when plotted 
were hardly discernible from those in Figures 3-6. Hence we may conclude from these observa- 
tions that at least for the low-amplitude situation in case A the neglect of the periodic component 
in the turbulence model is quite justifiable. 

In case B the calculation was performed at a higher relative amplitude of the periodic 
component, namely 37%. The computational conditions for this case (Table 11) correspond to 
those of the second experiment,’ but unfortunately the inlet velocity profiles in the wall region 
were not available from the published experimental results. In order to specify the upstream 
velocity boundary condition, we solved the same flow configuration with specified uniform inlet 
velocity profiles first (for both mean and periodic components). Then the computed velocity 
profiles u, and A at the location where the displacement thickness 6 ,  was nearest to the 
experimental value at measurement station 1 where x = 0 (see Reference 2) were used as the inlet 
boundary conditions which are shown in Figure 8. 

The finite element grid used in this case had 64 elements and 225 nodes with 441 net degrees of 
freedom. Out of the 441, 16 velocity degrees of freedom lie on the upstream boundary and are 
specified. For this problem there are 1275 net variables in total. 
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Figure 7. Effect of periodic component on viscosity profiles for case A, St = 1.2 
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Figure 8. Inlet velocity profiles in the wall region (case B) 
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UmNc 
Figure 9. Mean velocity profile in the wall region (case B) 

Figures 9 and 10 show the profiles of the mean velocity and the amplitude at the location 
x = 210 mm, which are in good agreement with the experimental measurements.2 The pattern of 
the mean velocity profile is very nearly that of the velocity profile for steady flow. Figure 11 shows 
a comparison of the computed phase with that from the experiment. The computed phase 
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Figure 10. Amplitude in the wall region (case B) 
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10 

2 0 

O 0  47 0 -5 0 5 v 10 0 15 20 

Figure 11. Phase in the wall region (case B) 

distribution has the same trend as the experimental measurement but is quite different in 
magnitude. This latter difference may be due to the inlet conditions, since, as explained before, the 
experimental conditions were not known and ad hoc ones had to be introduced herein. It is also 
conceivable that for this higher-amplitude case the present turbulence modelling is not optimum. 
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Figure 12. Average velocity profile (0") (case B) 
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Figure 13. Average velocity profile (90") (case B) 

How this modelling should change with amplitude and frequency is still an unexplored question. 
On the other hand, the phase-frozen velocity profiles discussed in the next paragraph are 
remarkably good. 

In Figures 12-15 the average velocity profiles for the given phases during one cycle are 
presented as functions of the distance normal to the wall. The velocity is reduced by its value u, at 
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Figure 14. Average velocity profile (180") (case B) 
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Figure 15. Average velocity profile (270") (case B) 

the symmetry line for the same value of the phase angle. It is seen that the experimental profiles 
are reasonably well reproduced. 

5. CONCLUDING REMARKS 

The present numerical study of a turbulent channel flow which is developing in the presence of a 
small oscillation appears to agree with the previous experimental observation that the general 
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behaviour of the flow and the structure of the turbulence are not fundamentally affected by the 
unsteadiness of the flow. 

The numerical calculations show that the present method is effective for the prediction of 
periodically oscillating turbulent flows. The predictions for the flow configurations considered 
here agreed satisfactorily with the experimental data. The method of averaging appears to work 
well and results in a significant reduction in computer time. 

The Baldwin-Lomax eddy viscosity model seems to work well for unsteady as well as steady 
flow, at least for conditions similar to those of the present study. Further numerical experiments 
for separated flows are currently under way. 

Further work is needed to develop modifications to the turbulence model to ‘unfreeze’ the eddy 
viscosity to account for large relative amplitudes of the periodic component, and the effect of 
frequency needs to be investigated. 
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APPENDIX: NOMENCLATURE 

mean component of nodal vector of unknowns 
in-phase and out-of-phase amplitudes of periodic component of nodal vector of 
unknowns 
nodal vector of unknowns 
Van Driest damping factor 
frequency (cycles per second) 
half-channel width (Figure 1 )  
stiffness matrix 
length of calculation domain (Figure 1 ) 
mass matrix 
finite element shape functions 
pressure 
u , p h / p ,  Reynolds number 
Qh/u, ,  Strouhal number 
time 
velocity components in x, y 
mean component of velocity 
harmonic component of velocity 
velocity at symmetry line 
inlet velocity 
inlet mean velocity at symmetry line 
inlet amplitude at symmetry line 
co-ordinates (Figure 1 )  
um/J(P/rw) 
J C  P ~ ~ ) Y / P  
boundary layer displacement thickness 
molecular viscosity 
p, + p effective viscosity 
eddy viscosity 



TURBULENT OSCILLATING CHANNEL FLOWS 457 

density 
shear stress 
wall shear stress 
phase angle 
vorticity 
2nf 
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